Self-assembly of the plant cell wall requires an extensin scaffold.

نویسندگان

  • Maura C Cannon
  • Kimberly Terneus
  • Qi Hall
  • Li Tan
  • Yumei Wang
  • Benjamin L Wegenhart
  • Liwei Chen
  • Derek T A Lamport
  • Yuning Chen
  • Marcia J Kieliszewski
چکیده

Cytokinesis partitions the cell by a cleavage furrow in animals but by a new cross wall in plants. How this new wall assembles at the molecular level and connects with the mother cell wall remains unclear. A lethal Arabidopsis embryogenesis mutant designated root-, shoot-, hypocotyl-defective (rsh) provides some clues: RSH encodes extensin AtEXT3, a structural glycoprotein located in the nascent cross wall or "cell plate" and also in mature cell walls. Here we report that electron micrographs of rsh mutant cells lacking RSH extensin correspond to a wall phenotype typified by incomplete cross wall assembly. Biochemical characterization of the purified RSH glycoprotein isolated from wild-type Arabidopsis cell cultures confirmed its identity as AtEXT3: a (hydroxy)proline-rich glyco protein comprising 11 identical amphiphilic peptide repeats with a 28-residue periodicity: SOOOOKKHYVYKSOOOOVKHYSOOOVYH (O = Hyp), each repeat containing a hydrophobic isodityrosine cross-link motif (YVY, underlined). Atomic force microscopy of RSH glycoprotein imaged its propensity for self-assembly into a dendritic scaffold. Extensin peroxidase catalyzed in vitro formation of insoluble RSH gels with concomitant tyrosine cross-linking, hence this likelihood in muro. We conclude that self-assembling amphiphiles of lysine-rich RSH extensin form positively charged scaffolds in the cell plate. These react with negatively charged pectin to create an extensin pectate coacervate that may template further orderly deposition of the new cross wall at cytokinesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the extensin superfamily in primary cell wall architecture.

Nearly two centuries of progress have established the major components of the plant cell wall, a composite that includes interpenetrating networks of cellulose (Payen, 1838; Schulze, 1891), microfibrils (Frey-Wyssling et al., 1948; Preston et al., 1948), pectin (Braconnot, 1825) and lignin (Payen, 1838). However, only over the last five decades has a relatively minor hydroxyproline-rich structu...

متن کامل

O15: Using Stromal Cell-Derived Factor-I as Bio Active Motif in A Novel Self-Assembly Peptide Nanofiber Scaffold: an Approach to Improve Cell Therapy in Brain Injury

Traumatic brain injury (TBI) is one of the main causes of mortality and morbidity worldwide. Despite extensive investigations over the past few decades, no effective therapies exist to improve the brain function in patients with TBI. Neural tissue engineering is an attractive therapeutic approach to restore the brain structure and function of damaged tissue. Bioactive motif of Stromal cell-deri...

متن کامل

Changes of major wall polysaccharides and glycoproteins of tobacco cells in response to excess boron

Effects of excess concentrations of boron on major cell wall components of tobacco cells(Nicotiana tabacum L. cv. Burley 21) were studied. Pectin, xyloglucan, hydroxyproline-richglycoproteins (extensin), and arabinogalactan proteins were characterized. Results showedthat increased boron supply resulted in significant decrease in cell and cell wall dry weights.Also, high concentrations of boron ...

متن کامل

The role of carbohydrate in maintaining extensin in an extended conformation.

Monomers of the plant cell wall glycoprotein extensin are secreted into the wall where they become cross-linked to each other to form a rigid matrix. Expression of the extensin matrix is correlated with the inhibition of further cell elongation during normal development, with increased resistance to virulent pathogens and with other physiological responses characterized by wall strengthening. C...

متن کامل

Rapid deposition of extensin during the elicitation of grapevine callus cultures is specifically catalyzed by a 40-kilodalton peroxidase.

Elicitation or peroxide stimulation of grape (Vitis vinifera L. cv Touriga) vine callus cultures results in the rapid and selective in situ insolubilization of an abundant and ionically bound cell wall protein-denominated GvP1. Surface-enhanced laser desorption/ionization/time of flight-mass spectrometry analysis, the amino acid composition, and the N-terminal sequence of purified GvP1 identifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 6  شماره 

صفحات  -

تاریخ انتشار 2008